Boolean Operators

Let us understand details about boolean operators while filtering data in Spark Data Frames.

  • If we have to validate against multiple columns then we need to use boolean operations such as AND or OR or both.

  • Here are some of the examples where we end up using Boolean Operators.

    • Get count of flights which are departed late at origin and reach destination early or on time.

    • Get count of flights which are departed early or on time but arrive late by at least 15 minutes.

    • Get number of flights which are departed late on Saturdays as well as on Sundays.

Let us start spark context for this Notebook so that we can execute the code provided. You can sign up for our 10 node state of the art cluster/labs to learn Spark SQL using our unique integrated LMS.

from pyspark.sql import SparkSession

import getpass
username = getpass.getuser()

spark = SparkSession. \
    builder. \
    config('spark.ui.port', '0'). \
    config("spark.sql.warehouse.dir", f"/user/{username}/warehouse"). \
    enableHiveSupport(). \
    appName(f'{username} | Python - Basic Transformations'). \
    master('yarn'). \
    getOrCreate()

If you are going to use CLIs, you can use Spark SQL using one of the 3 approaches.

Using Spark SQL

spark2-sql \
    --master yarn \
    --conf spark.ui.port=0 \
    --conf spark.sql.warehouse.dir=/user/${USER}/warehouse

Using Scala

spark2-shell \
    --master yarn \
    --conf spark.ui.port=0 \
    --conf spark.sql.warehouse.dir=/user/${USER}/warehouse

Using Pyspark

pyspark2 \
    --master yarn \
    --conf spark.ui.port=0 \
    --conf spark.sql.warehouse.dir=/user/${USER}/warehouse

Tasks

Let us perform some tasks to understand filtering in detail. Solve all the problems by passing conditions using both SQL Style as well as API Style.

  • Read the data for the month of 2008 January.

airtraffic_path = "/public/airtraffic_all/airtraffic-part/flightmonth=200801"
airtraffic = spark. \
    read. \
    parquet(airtraffic_path)
airtraffic.printSchema()
root
 |-- Year: integer (nullable = true)
 |-- Month: integer (nullable = true)
 |-- DayofMonth: integer (nullable = true)
 |-- DayOfWeek: integer (nullable = true)
 |-- DepTime: string (nullable = true)
 |-- CRSDepTime: integer (nullable = true)
 |-- ArrTime: string (nullable = true)
 |-- CRSArrTime: integer (nullable = true)
 |-- UniqueCarrier: string (nullable = true)
 |-- FlightNum: integer (nullable = true)
 |-- TailNum: string (nullable = true)
 |-- ActualElapsedTime: string (nullable = true)
 |-- CRSElapsedTime: integer (nullable = true)
 |-- AirTime: string (nullable = true)
 |-- ArrDelay: string (nullable = true)
 |-- DepDelay: string (nullable = true)
 |-- Origin: string (nullable = true)
 |-- Dest: string (nullable = true)
 |-- Distance: string (nullable = true)
 |-- TaxiIn: string (nullable = true)
 |-- TaxiOut: string (nullable = true)
 |-- Cancelled: integer (nullable = true)
 |-- CancellationCode: string (nullable = true)
 |-- Diverted: integer (nullable = true)
 |-- CarrierDelay: string (nullable = true)
 |-- WeatherDelay: string (nullable = true)
 |-- NASDelay: string (nullable = true)
 |-- SecurityDelay: string (nullable = true)
 |-- LateAircraftDelay: string (nullable = true)
 |-- IsArrDelayed: string (nullable = true)
 |-- IsDepDelayed: string (nullable = true)
  • Get count of flights which are departed late at origin and reach destination early or on time.

airtraffic. \
    select('IsDepDelayed', 'IsArrDelayed', 'Cancelled'). \
    distinct(). \
    show()
+------------+------------+---------+
|IsDepDelayed|IsArrDelayed|Cancelled|
+------------+------------+---------+
|          NO|          NO|        0|
|         YES|         YES|        1|
|          NO|         YES|        0|
|         YES|          NO|        0|
|         YES|         YES|        0|
+------------+------------+---------+
airtraffic. \
    filter("IsDepDelayed = 'YES' AND IsArrDelayed = 'NO' AND Cancelled = 0"). \
    show()
airtraffic. \
    filter("IsDepDelayed = 'YES' AND IsArrDelayed = 'NO' AND Cancelled = 0"). \
    count()
54233
  • API Style

from pyspark.sql.functions import col
airtraffic. \
    filter((col("IsDepDelayed") == "YES") & 
           (col("IsArrDelayed") == "NO") &
           (col("Cancelled") == 0)
          ). \
    count()
54233
airtraffic. \
    filter((airtraffic["IsDepDelayed"] == "YES") & 
           (airtraffic.IsArrDelayed == "NO") &
           (airtraffic.Cancelled == 0)
          ). \
    count()
54233
  • Get count of flights which are departed early or on time but arrive late by at least 15 minutes.

airtraffic. \
    select('IsDepDelayed', 'IsArrDelayed', 'Cancelled'). \
    distinct(). \
    show()
+------------+------------+---------+
|IsDepDelayed|IsArrDelayed|Cancelled|
+------------+------------+---------+
|          NO|          NO|        0|
|         YES|         YES|        1|
|          NO|         YES|        0|
|         YES|          NO|        0|
|         YES|         YES|        0|
+------------+------------+---------+
# Cancelled is always 0 when there is no delay related to departure
# We can ignore check against Cancelled
airtraffic. \
    filter("IsDepDelayed = 'NO' AND ArrDelay >= 15"). \
    count()
20705
airtraffic. \
    filter("IsDepDelayed = 'NO' AND ArrDelay >= 15 AND cancelled = 0"). \
    count()
20705
  • API Style

from pyspark.sql.functions import col

airtraffic. \
    filter((col("IsDepDelayed") == "NO") & 
           (col("ArrDelay") >= 15)
          ). \
    count()
20705
  • Get number of flights departed late on Sundays as well as on Saturdays. We can solve such kind of problems using IN operator as well.

from pyspark.sql.functions import col, concat, lpad

airtraffic. \
    withColumn("FlightDate",
                concat(col("Year"),
                       lpad(col("Month"), 2, "0"),
                       lpad(col("DayOfMonth"), 2, "0")
                      )
              ). \
    show()
l = [('X',)]
df = spark.createDataFrame(l, "dummy STRING")
from pyspark.sql.functions import current_date
df.select(current_date()).show()
+--------------+
|current_date()|
+--------------+
|    2021-03-01|
+--------------+
from pyspark.sql.functions import date_format

df.select(current_date(), date_format(current_date(), 'EE').alias('day_name')).show()
+--------------+--------+
|current_date()|day_name|
+--------------+--------+
|    2021-03-01|     Mon|
+--------------+--------+
from pyspark.sql.functions import date_format

df.select(current_date(), date_format(current_date(), 'EEEE').alias('day_name')).show()
+--------------+--------+
|current_date()|day_name|
+--------------+--------+
|    2021-03-01|  Monday|
+--------------+--------+
from pyspark.sql.functions import col, concat, lpad

airtraffic. \
    withColumn("FlightDate",
               concat(col("Year"),
                      lpad(col("Month"), 2, "0"),
                      lpad(col("DayOfMonth"), 2, "0")
                     )
              ). \
    filter("""
           IsDepDelayed = 'YES' AND Cancelled = 0 AND
           (date_format(to_date(FlightDate, 'yyyyMMdd'), 'EEEE') = 'Saturday'
               OR date_format(to_date(FlightDate, 'yyyyMMdd'), 'EEEE') = 'Sunday'
           )
           """). \
    count()
57873
  • API Style

from pyspark.sql.functions import col, concat, lpad, date_format, to_date

airtraffic. \
    withColumn("FlightDate",
               concat(col("Year"),
                      lpad(col("Month"), 2, "0"),
                      lpad(col("DayOfMonth"), 2, "0")
                     )
              ). \
    filter((col("IsDepDelayed") == "YES") & (col("Cancelled") == 0) &
           ((date_format(
               to_date("FlightDate", "yyyyMMdd"), "EEEE"
           ) == "Saturday") |
            (date_format(
               to_date("FlightDate", "yyyyMMdd"), "EEEE"
           ) == "Sunday")
           )
          ). \
    count()
57873