Understand airlines dataΒΆ
Let us read one of the files and understand more about the data to determine right API with right options to process data later.
Our airlines data is in text file format.
We can use
spark.read.text
on one of the files to preview the data and understand the followingWhether header is present in files or not.
Field Delimiter that is being used.
Once we determine details about header and field delimiter we can use
spark.read.csv
with appropriate options to read the data.
Let us start spark context for this Notebook so that we can execute the code provided. You can sign up for our 10 node state of the art cluster/labs to learn Spark SQL using our unique integrated LMS.
from pyspark.sql import SparkSession
import getpass
username = getpass.getuser()
spark = SparkSession. \
builder. \
config('spark.ui.port', '0'). \
config("spark.sql.warehouse.dir", f"/user/{username}/warehouse"). \
enableHiveSupport(). \
appName(f'{username} | Python - Data Processing - Overview'). \
master('yarn'). \
getOrCreate()
If you are going to use CLIs, you can use Spark SQL using one of the 3 approaches.
Using Spark SQL
spark2-sql \
--master yarn \
--conf spark.ui.port=0 \
--conf spark.sql.warehouse.dir=/user/${USER}/warehouse
Using Scala
spark2-shell \
--master yarn \
--conf spark.ui.port=0 \
--conf spark.sql.warehouse.dir=/user/${USER}/warehouse
Using Pyspark
pyspark2 \
--master yarn \
--conf spark.ui.port=0 \
--conf spark.sql.warehouse.dir=/user/${USER}/warehouse
%%sh
hdfs dfs -ls -h /public/airlines_all/airlines/part-00000
airlines = spark.read. \
text("/public/airlines_all/airlines/part-00000")
type(airlines)
help(airlines.show)
airlines.show(truncate=False)
help(spark.read.text)
Data have header and each field is delimited by a comma.